Learn about Tensorflow Model Optimization Toolkit and techniques like Pruning, Weight Clustering and Quantization Aware Training β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β
Hello trend,
This is Satya Mallick from LearnOpenCV.com.
In today's post, we will take a deep dive into Model Optimization using the Tensorflow Model Optimization toolkit. The TensorFlow Model Optimization Toolkit is a suite of tools for optimizing ML models for deployment and execution. The model optimization techniques that we will discuss in this post are:
- Pruning: We remove unnecessary connections in the network and thus reduce the size of the model.
- Weight Clustering: It is a technique designed to decrease model storage requirements using clustering and data compression algorithms. The weights are saved using lesser number of bits.
- Quantization Aware Training (QAT): Quantization results in loss of information. So, Quantization Aware Training tries to minimize the quantization loss by adding it to the loss function and minimize it during training. Thus, achieving a more robust quantized model.
Without further ado, let's get started.
You can check out the code by clicking on the button below, and star us on GitHub to say thanks!
The TFLite and Model Optimization Series
This is the complete list of posts in the TFLite and model optimization Series:
- βTensorFlow Lite: Model Optimization for On-Device Machine Learningβ
- βTensorFlow Lite Model Maker: Create Models for On-Device Machine Learningβ
- βTensorFlow Model Optimization Toolkit: Deeper Dive into Model Optimizationβ
Please let us know if you want us to write more articles on TFLite and model optimization by replying to this email.
Cheers!
βSatya
βCode for ALL blog postsβ
βCourses / YouTube / Facebook / LinkedIn / Twitter / Instagramβ
β
No comments:
Post a Comment
Note: Only a member of this blog may post a comment.