# Initializing the ANN ann = tf.keras.models.Sequential()  # Adding the input layer and the first hidden layer ann.add(tf.keras.layers.Dense(units=6, activation='relu')) # units = 6 -- has highest accuracy  # Adding the second hidden layer ann.add(tf.keras.layers.Dense(units=6, activation='relu'))  # Adding the output layer ann.add(tf.keras.layers.Dense(units=1, activation='sigmoid')) # units = 1 -- for binary values  # Part 3 - Training the ANN  # Compiling the ANN ann.compile(optimizer = 'adam', loss = 'binary_crossentropy', metrics = ['accuracy'])  # Training the ANN on the Training set ann.fit(X_train, y_train, batch_size = 32, epochs = 100)

Read more of this post