# Basic syntax: df_onehot = pd.get_dummies(df, columns=['col_name'], prefix=['one_hot']) # Where: #	- get_dummies creates a one-hot encoding for each unique categorical #		value in the column named col_name #	- The prefix is added at the beginning of each categorical value  #		to create new column names for the one-hot columns  # Example usage: # Build example dataframe: df = pd.DataFrame(['sunny', 'rainy', 'cloudy'], columns=['weather']) print(df)   weather 0   sunny 1   rainy 2  cloudy  # Convert categorical weather variable to one-hot encoding: df_onehot = pd.get_dummies(df, columns=['weather'], prefix=['one_hot']) print(df_onehot) 	one_hot_cloudy	 one_hot_rainy   one_hot_sunny 0                0               0               1 1                0               1               0 2                1               0               0

Read more of this post