Data is increasingly becoming core to many products and services.

Whether to provide recommendations for users, getting insights on how they use the product, or using machine learning to improve the experience. This creates a critical need for reliable data operations and understanding how data is flowing through our systems. Data pipelines must be auditable, reliable, and run on time. This proves particularly difficult in a constantly changing, fast-paced environment.

Marquez is an open source project part of the LF AI & Data foundation which instruments data pipelines to collect lineage and metadata and enable those use cases. It implements the OpenLineage API and provides context by making visible dependencies across organizations and technologies as they change over time.